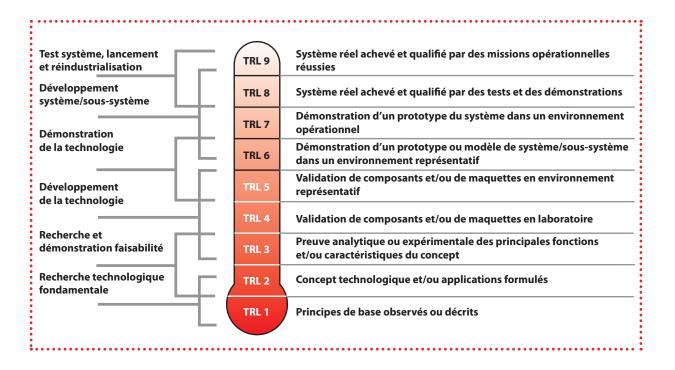
Quelques explications sur l'échelle des TRL (Technology readiness level)

d'après le plan stratégique de recherche & technologie de défense et de sécurité - DGA 2009


Les TRL forment une échelle d'évaluation du degré de maturité atteint par une technologie. Cette échelle a été imaginée par la Nasa en vue de gérer le risque technologique de ses programmes. Initialement constituée de sept niveaux, elle en comporte neuf depuis 1995 [1]:

L'échelle des TRL a depuis été adoptée par de nombreux domaines, dont celui notamment de la défense, dans le même but principal de gestion du risque technologique dans les programmes, moyennant quelques adaptations minimes (remplacement de la notion d'espace par la notion d'environnement opérationnel).

TRL	Définition	Description	Justification
1	Principes de base observés et décrits.	Plus bas niveau de maturité technologique. La recherche scientifique commence à être traduite en une recherche et développement (R&D) appliquée. Les exemples peuvent inclure des études papier portant sur les propriétés de base d'une technologie.	Publications de travaux de recherche identifiant les principes de base de la technologie. Références relatives à ces travaux (qui, où et quand ?).
2	Concept technologique et/ou application formulés.	L'invention commence. Les principes de base ayant été observés, des applications peuvent être envisagées. Elles sont spéculatives et il n'existe pas de preuve ou d'analyse détaillée pour étayer les hypothèses. Les exemples sont limités à des études analytiques.	Publications ou autres références qui esquissent l'application considérée et fournissent une analyse appuyant le concept.
3	Preuve analytique ou expérimentale des principales fonctions et/ou caractéristiques du concept.	Une R&D active est initiée. Elle comprend des études analytiques, et des études en laboratoire destinées à valider physiquement les prédictions analytiques faites pour les différents éléments de la technologie. Les exemples impliquent des composants non encore intégrés ou représentatifs.	Résultats de mesures en laboratoire portant sur les paramètres essentiels des sous-systèmes critiques et comparaison de ces résultats aux prédictions analytiques. Références relatives à la réalisation de ces tests et de ces comparaisons, (qui, où et quand ?).
4	Validation de composants et/ou de maquettes en laboratoire.	Des composants technologiques de base sont intégrés de façon à vérifier leur aptitude à fonctionner ensemble. La représentativité est relativement faible si l'on se réfère au système final. Les exemples incluent l'intégration en laboratoire d'éléments ad hoc.	Concepts envisagés du système et résultats d'essais de maquettes de laboratoire. Références relatives à la réalisation des travaux (qui, où et quand ?). Estimation des différences entre la maquette du matériel, les résultats des essais et les objectifs du système envisagé.

TRL	Définition	Description	Justification
5	Validation de composants et/ou de maquettes en environnement représentatif	La représentativité de la maquette technologique augmente significativement. Les composants technologiques de base sont intégrés à des éléments supports raisonnablement réalistes, de façon à être testés en environnement simulé. Les exemples incluent l'intégration hautement représentative de composants en laboratoire.	Résultats d'essais d'une maquette de laboratoire du système, intégrée à des éléments supports, dans un environnement opérationnel simulé. Écarts entre environnement représentatif et environnement opérationnel visé. Comparaison entre les résultats des essais et les résultats attendus. Problèmes éventuellement rencontrés. La maquette du système a-t-elle été raffinée pour mieux correspondre aux objectifs du système envisagé ?
6	Démonstration d'un prototype ou d'un modèle de système/ sous-système dans un environnement représentatif.	Un modèle représentatif ou un système prototype, allant bien au-delà de celui du TRL 5, est testé dans un environnement représentatif. Cela représente une étape majeure dans la démonstration de la maturité d'une technologie. Les exemples incluent les essais d'un prototype dans un environnement de laboratoire reproduisant fidèlement des conditions réelles ou les essais dans un environnement opérationnel simulé.	Résultats d'essais en laboratoire d'un système prototype très proche de la configuration désirée en termes de performance, masse et volume. Écarts entre l'environnement d'essai et l'environnement opérationnel. Comparaison entre les résultats des essais et les résultats attendus. Problèmes éventuellement rencontrés. Plans, options ou actions envisagés pour résoudre les problèmes rencontrés avant de passer au niveau suivant.
7	Démonstration d'un prototype du système dans un environnement opérationnel.	Prototype conforme au système opérationnel, ou très proche. Ce TRL représente un saut important par rapport au TRL 6, exigeant la démonstration d'un prototype du système réel dans son environnement opérationnel (par exemple dans un avion, dans un véhicule, dans l'espace). À titre d'exemple, on peut citer le test d'un prototype dans un avion banc d'essai.	Résultats d'essais d'un système prototype en environnement opérationnel. Identifications des entités ayant réalisé les essais. Comparaison entre les résultats des essais et les résultats attendus. Problèmes éventuellement rencontrés. Plans, options ou actions envisagés pour résoudre les problèmes rencontrés avant de passer au niveau suivant.

TRL	Définition	Description	Justification
8	Système réel achevé et qualifié par des tests et des démonstrations	La preuve est faite que la technologie fonctionne dans sa forme finale, et dans les conditions d'emploi prévues. Dans la plupart des cas, ce niveau de TRL marque la fin du développement du système réel. Les exemples incluent les tests et évaluations du système dans le système d'armes auquel il est destiné, afin de déterminer s'il satisfait aux spécifications.	Résultats d'essai du système dans sa configuration finale confronté à des conditions d'environnement couvrant l'ensemble du domaine d'utilisation. Évaluation de ses capacités à satisfaire les exigences opérationnelles. Problèmes éventuellement rencontrés. Plans, options ou actions envisagés pour résoudre les problèmes rencontrés avant de finaliser la conception.
9	Système réel qualifié par des missions opérationnelles réussies.	Application réelle de la technologie sous sa forme finale et dans des conditions de missions telles que celles rencontrées lors des tests et évaluations opérationnels. Les exemples incluent l'utilisation du système dans des conditions de mission opérationnelle.	Rapports de tests et d'évaluations opérationnels.

Liste des technologies candidates

TC 2015 : la technologie candidate à été retenue comme technologie clé.

1: la technologie candidate n'a pas été jugée clé comme telle, mais elle a été intégrée dans une technologie clé 2015 de portée plus vaste (système, famille).

NR: la technologie candidate n'a pas été retenue comme clé par les groupes d'experts.

Chimie - Matériaux - Procédés

Noms des technologies	Statut	N°
Biotechnologies blanches	TC2015	3
Bioproduits	I	3
Biomolécules	I	3
Nanomatériaux	I	1
Nanosystèmes	1	1
Technologies pour la miniaturisation	I	4
Catalyse chimique	I	5
Dépôt de couche mince	TC2015	6
Matériaux fonctionnels, de performance	TC2015	7
Modélisation moléculaire, in silico	TC2015	2
Prototypage rapide	TC2015	10
Capteurs	TC2015	8
Élaboration de composites et assemblage multimatériaux	TC2015	11
Procédés membranaires	TC2015	9
Contrôle non destructif / Surveillance intelligente de l'élaboration et de la mise en œuvre des matériaux	TC2015	12
Procédés de transmission du signal		22
Physique	i	8
Chimique	i	8
Biologique - Biocapteurs	<u>'</u>	8
Catalyse homogène	<u>'</u> 	5
Catalyse hétérogène	<u>'</u>	5
Photocatalyse, électrocatalyse	<u>'</u>	5
Catalyse enzymatique	<u>'</u> 	5
Biomatériaux - Biopolymères	<u> </u>	3
	NR	3
Molécules plateformes		22
Complementary metal oxide semi-conductor CMOS	<u> </u>	23
Transistors couches minces SOI ou nouveaux concepts de MOS, DRAM	<u> </u>	23
Mémoire embarquée	<u> </u>	23
Nanoélectronique	TC2045	23
Électronique de puissance, matériaux grand gap	TC2015	65
Électronique organique	<u> </u>	23
Isolants thermiques	<u>l</u>	71
Mécaniques : chocs, vibrations, sonores	NR	
Méta matériaux pour la transmission de la lumière	I	22
Magnétiques	I	23
Piézoélectrique	NR	
Ferroélectrique	NR	
Mémoires résistives	I	23
Semi-conducteurs III-V	I	23
MEMS	1	23
NEMS	I	23
Photovoltaïque organique	I	49
Hydrogène	I	46

Enzymatique		3
Ingénierie métabolique	I	3
Matrice organique (CMO)	1	11
Matrice céramique	1	11
Matrice métallique (CMM)		11
RTM, infusion		11
Extrusion réactive	NR	
Forgeage net shape	NR	
System In Package (SiP)		23
System On a Chip (SoC)		23
Assemblage de circuits		23
Report de composants	NR	
Time Of Flight Diffraction (TOFD)		12
Thermographie		12
Shearographie, déflectométrie		12
CND de procédés chimique		12
Phased Array		12
Pulvérisation Plasma, Flamme oxyacétylénique		6
Chemical Vapor Deposition (CVD),		
Atomic Layer Deposition (ALD) et Plasma Enhanced ALD (PEALD),	1	6
Physical Vapor Deposition (PVD)		
Ablation Laser		6
Séparation de gaz	I	9
Traitement de liquide	I	9
Membranes sélectives, «intelligentes»	I	9
Transmission du signal	I	22
Miniréacteurs	I	4
Réacteurs microstructurés	I	4
Réduction du nombre de procédés, Utilisation des nouveaux solvants	NR	
Stéréolithographie		10
Microfabrication de composants par impression jet d'encre		10
Impression 3D		10
Impression «voie liquide»		10
Matériaux composites	NR	
Métaux		37
Moléculaire	NR	

Technologies de l'information de la communication

Noms des technologies	Statut	N°
Technologies réseaux sans-fil (3G, 4G, radio logicielle, radio cognitive)	TC2015	14
Robotique	TC2015	13
Réseaux haut débit optiques (fibre)	TC2015	15
Indexation de contenu et technologies sémantiques	I	28
Sécurisation des transactions (cryptographie)	I	25
Réalité virtuelle, réalité augmentée	I	17, 18
Géolocalisation	NR	
RFID et cartes sans contacts	I	16
lmage 3D relief (stéréoscopie)	I	17
Gestion et distribution de contenu en ligne (moteur, CDN, codec, etc)	NR	
Numérisation de contenu	TC2015	24
Écrans tactiles et IHM (téléphone, surface, etc)	I	29

Objets connectés/objets communicants (M2M, etc)		16
Terminaux multimédia connectés (TV, smartphones, etc)	NR	
Green Telecom (via femtocell, antennes intelligentes, etc)	NR	
Réseaux intelligents/auto-configurants/sémantiques	NR	
Applications mobiles	NR	
Logiciel embarqué	I	27
Model Driven Architecture	NR	
SOA	I	25
Open source	NR	
Virtualisation & Cloud Computing	I	25
Communications unifiées	I	29
Portail & Collaboration/Knowledge management	I	29
Information Management	I	28
Modélisation, simulation, calcul	I	2, 19, 70
Processeurs & systèmes	I	27
SCM	NR	
PLM		21, 67, 69, 73
MES	NR	
Intégration de systèmes complexes & ingénierie de système de systèmes	TC2015	19
Intelligence distribuée	I	26
<u> </u>		

Environnement

Noms des technologies	Statut	N°
Capteurs pour l'acquisition de données	TC2015	31
Technologies pour la captation maîtrisée des sédiments pollués et pour leur traitement	TC2015	30
Couplage mesure terrestre et mesure satellitaire	I	32
Technologies pour le traitement de l'air	TC2015	34
Technologies de traitement des polluants émergents de l'eau	TC2015	33
Technologies pour la dépollution <i>in situ</i> des sols / sites pollués	TC2015	35
Technologies pour le dessalement de l'eau à faible charge énergétique	TC2015	32
Technologies pour la gestion des ressources en eau	TC2015	36
Technologies pour le recyclage des matériaux rares	TC2015	37
Déconstruction des bâtiments en vue de la valorisation matière sur site	I	72
Technologies de tri automatique et valorisation des déchets organiques	1	38
Valorisation des ressources organiques marines (algues vertes)	1	41
Technologies pour l'exploration, l'extraction et le traitement des ressources minérales	TC2015	55
Éco-conception	TC2015	40

Énergie

Noms des technologies	Statut	N°
Carburants de synthèse issus de ressources fossiles	TC2015	56
Gazéification		41, 57
Solaire photovoltaïque	TC2015	48
Solaire thermodynamique	TC2015	42
Nucléaire de quatrième génération	1	47
Fusion nucléaire	NR	
Piles à combustible	TC2015	44
Pompes à chaleur	1	75
Micro-cogénération	NR	

Technologies de l'hydrogène	TC2015	45
Réseaux électriques intelligents	TC2015	52
Capture et stockage du CO ₂	TC2015	46
Énergies marines	TC2015	43

Transports

Noms des technologies	Statut	N°
Technologies de stockage et de gestion de l'énergie électrique	TC2015	63
Batteries Lithium-lon	1	63
Supercapacités et systèmes de stockage intermittent	I	63
Technologies pour les infrastructures de recharge des véhicules	NR	
Propulsion et puissance hybride	I	58
Électronique de puissance	TC2015	64
Mécatronique	TC2015	65
Moteurs à combustion interne	TC2015	58
Moteurs électriques	TC2015	59
Capteurs d'environnement pour la sécurité primaire et la sûreté.	1	66
Communications et systèmes coopératifs	[66
Interfaces homme-machine, ergonomie	TC2015	61
Sécurité des systèmes de transport	NR	
Maintenance prédictive, télémaintenance	NR	
Outils et méthodes de conception et de validation	TC2015	69
Lean engineering, lean manufacturing	[67
Matériaux et technologie d'assemblage pour l'allègement	TC2015	68
Fiabilité et sécurité des systèmes embarqués	NR	
Optimisation de la chaîne logistique	TC2015	62
Géolocalisation, traçabilité	[66
Sécurité et sûreté des grands systèmes		19
Maîtrise des sources de bruit	NR	
Matériaux durables de structure	I	68
Processus industriels pour la customisation	NR	

Bâtiment

Statut	N°
TC2015	72
TC2015	74
TC2015	73
I	70
TC2015	75
TC2015	71
NR	
I	34
I	72
	TC2015 TC2015 TC2015 I TC2015 TC2015

Santé, Agriculture et Agroalimentaire

Noms des technologies	Statut	N°
Ultrasons focalisés de haute intensité	NR	
Biologie de synthèse, systémique et intégrative	I	79
Biomarqueurs	I	83
Matériaux biocompatibles	I	80
Organes bio-artificiels et prothèses complexes	I	80
Bioproduction	NR	
Capteurs biologiques	I	82
Médecine régénérative (thérapies cellulaires, tissulaires et cellules souches, thérapie génique)	I	76
Économie de la santé	NR	
Ergonomie	NR	
lmagerie du vivant	TC2015	84
Microsystèmes biologiques	NR	
Modèles animaux prédictifs	NR	
Modélisation in silico	NR	
Robotique médicale et intervention guidée par l'image	I	13, 82, 84
Services à domicile	NR	
Traitement massif des données biologiques et cliniques	I	20
ngénierie du système immunitaire	TC2015	78
Vectorisation	NR	
Autres technologies pour des approches thérapeutiques non invasives	NR	
Services associés aux nouvelles technologies de séquençage du génome	NR	
Services associés à la télémédecine	NR	
Amélioration de la biodisponibilité des nutriments	NR	
Biotechnologies marines	I	3
Écosystèmes microbiens	TC2015	81
Technologies douces d'assainissement (asepsie et préservation)	TC2015	85
Technologies d'information et de traçabilité	I	16
Engrais naturels, produits phytosanitaires	NR	
Sélections & créations végétales et animales assistées par marqueurs	NR	
Substitution des protéines animales par des protéines végétales	NR	
Chimie combinatoire/prévisionnelle	NR	

Liste des participants à l'étude :

Comité stratégique

Comité de pilotage

Denis RANQUE	Cercle de l'industrie	Grégoire POSTEL-VINAY	DGCIS
Luc ROUSSEAU	DGCIS	Lionel PREVORS	DGCIS
Ronan STEPHAN	DGRI	Alexandre DUBOIS	DGCIS
Pierre-Franck CHEVET	DGEC	Annie GEAY	Oséo
Olivier APPERT	IFP	Jacques ROSEMONT	Oséo
Michel ATHIMON	Alstom	Françoise STRASSER	Adit
Kevin COGO	Alstom	Jean-Michel KEHR	MEDDTL
Nicolas SERRIE	Alstom	Richard LAVERGNE	MEDDTL
Franck HUIBAN	EADS	Alain GRIOT	MEDDTL
Catherine LANGLAIS	Saint-Gobain	Ludovic VALADIER	ANR
Vincent CHARLET	ANRT-Futuris	Armel de LA BOURDONNAYE	MESR
Adeline FABRE	DGEC	Sylvie METZ-LARUE	DGCIS
Philippe de LACLOS	Cetim	Christophe RAVIER	DGCIS
Jacques GRASSI	Inserm	Sylvie RAVIER	DGCIS
Jean-Claude PETIT	CEA	Sylvie DONNE	DGCIS
Christophe MIDLER	École polytechnique	Véronique BARRY	DGCIS
Dominique VERNAY	SYSTEM@TIC	Romain BEAUME	DGCIS
Solange BORIE	Bipe	Raymond HEITZMANN	DGCIS
Patrick LLERENA	Beta	Frédéric KAROLAK	DGCIS
Gabriele FIONI	DGRI	Philippe BAUDRY	DIRECCTE Bretagne
Jean-Pierre DEVAUX	DGA	Jean-François MORAS	DIRECCTE Île-de-France
Jean-Philippe BOURGOIN	CEA	Emmanuel LEGROS	DGA
Thierry CHAMBOLLE	Académie des technologies	Patrick HAOUAT	Erdyn
Richard LAVERGNE	MEDDTL	Aurélien COQUAND	Erdyn
Robert PLANA	DGRI	Vanessa HANIFA	Alcimed
Grégoire POSTEL-VINAY	DGCIS	Nadia MANDRET	Alcimed
Jacques GRASSI	Inserm	Tiffany SAUQUET	ldate
		Renaud SMAGGHE	Pierre Audoin Consultants
		Mathieu PUJOL	Pierre Audoin Consultants

Sectoriels de la DGCIS		Chimie, matériaux et proc	édés
Jean-Marc GROGNET	DGCIS	Fabrice de PANTHOU	AET Group
Daniel VASMANT	DGCIS	Georges TAILLANDIER	AFPR
Jean-Paul PERON	DGCIS	Martha HEITZMANN	Air Liquide
Marc ROHFRITSCH	DGCIS	Didier KAYSER	Alcimed
Caroline LEBOUCHER	DGCIS	Christian COLLETTE	Arkema
Emilie PIETTE	DGCIS	Valerie LUCAS	Association Chimie
Annie CALISTI	DGCIS		du végétal
Aline PEYRONNET	DGCIS	Virginie PEVERE	Axelera
Frédéric SANS	DGCIS	Jean Philippe BOURGOIN	CEA-saclay
Vincent SUSPLUGAS	DGCIS	Philippe de LACLOS	Cetim
Jean-Marc LE PARCO	DGCIS	Laurent COUVE	Cetim
Emma DELFAU	DGCIS	Pascal SOUQUET	Cetim
Roger FLANDRIN	DGCIS	Jérôme KLAEYLE	Chimie du végétal
Sylvie DONNE	DGCIS	Nicole JAFFREZIC-RENAULT	CMC2
Emilie SOMBRET	DGCIS	Cyril KOUZOUBACHIAN	Cofrend
Brigitte SICA	DGCIS	Eric LAFONTAINE	DGA
Richard MARTIN	DGCIS	Philippe MASCLET	DGA
Eric BERNER	DGCIS	Thierry CHARTIER	ENSCI
		Jean-Marc LE LANN	Ensiacet
		Michel MATLOSZ	Ensic
Consultants		Gilbert RIOS	European Membrane
		House	
Patrick HAOUAT	Erdyn	Jean-Claude CHARPENTIER	Fédération
Stéphane BOUDIN	Erdyn		européenne
Olivier FALLOU	Erdyn	Anne IMBERTY	Génie des procédés GGMM
Aurélien COQUAND	Erdyn		
Vincent BONNEAU	Idate	Thierry STADLER	IAR
Tiffany SAUQUET	Idate	Xavier MONTAGNE	IFP
Valérie CHAILLOU	Idate	Pierre MONSAN	Insa Toulouse
Frederic PUJOL	Idate	Jacques LARROUY	Instituts Carnot
Samuel ROPERT	Idate	Daniel BIANCHI	Ircelyon
Alain PUISSOCHET	Idate	Thierry BARON	Laboratoire des techniques de
Math: DOLLIOI	DAG		miero électroniques

Ludovic POUPINET

Olivier BONNET

Caroline FEFTER

Sylvie DUMARTINEIX

Jean CURIS

microélectroniques

Ministère de l'Écologie

Leti

Materalia

Materis

Oséo

Mathieu POUJOL

Daniel ESTEVES

Élisabeth de MAULDE

Renaud SMAGGHE

Matthias ACCADIA

Vanessa HANIFA

PAC

PAC

PAC

PAC

PAC

Alcimed

David POCIC Pôle Fibres

Christophe RUPP-DAHLEM Roquette

François MONNET Solvay Research & Technology

Agnès ARRIVÉ Techtera

Agnès ARRIVÉ Techtera
Philipe GIRARD Total
Francis LUCK Total
Daniel MARINI UIC
Jacques BARBIER Valagro

TIC

JL BEYLAT Alcatel-Lucent Olivier AUDOUIN Alcatel-Lucent **Georges PASSET Bouygues Telecom** Bernard OURGHANLIAN Microsoft Viktor ARVIDSSON Ericsson Jean-Pierre LACOTTE Technicolor Martin MAY Technicolor Valère ROBIN France Télécom Jean-François CAENEN Capgemini Thierry ROUQUET Arkoon Yvan CHABANNE Altran IBM Ambuj GOYAL David AVET Société Générale Tony WASSEMAN Carnegie Mellon **Bernard ODIER** Inria David MONTEAU Inria Thierry COLLETTE **CEA-List** Michael FOURNIER Systematic Françoise COLAITIS Cap Digital Yves le MOUEL **FFT** Anne DARNIGE Oséo Jacques BLANC-TALON DGA Arnaud RIVIÈRE de LA SOUCHÈRE DGCIS Laure DUCHAUSSOY **DGCIS** Fabien TERRAILLOT **DGCIS** Alain-Yves BREGENT **DGCIS** Mireille CAMPANA **DGCIS**

David PHILIPONA DGCIS
Julien CHAUMONT DGCIS
Benoit FORMERY DGCIS
Franck TARRIER DGCIS

Environnement

Philippe GISLETTE Cirsee Éric LESUEUR Véolia Jacques VARET BRGM François MOISAN Ademe ANR Philippe FREYSSINET Thierry CHAMBOLLE Suez Ian CLARK DG Environnement Diane d'ARRAS **European Technology**

Platform for Water

Eddo HOEKSTRA JRC of the European

Commission

Énergie

Daniel CLEMENT Ademe

Stéphane SIGNORET Atee

Abdelkrim BENCHAIB Gimelec

Yves MARÉCHAL Institut
Carnot-Énergies
du futur

Joachim RAMS Institut Carnot-ARTS

Michel SARDIN Institut Carnot-ICEEL Thomas SENNELIER Oséo **Guy HERROUIN** Pôle Mer Paca Pôle S2E2 Bogdan ROSINSKI Pôle S2E2 Jérôme FINOT Paul LUCCHESE CEA IFP François KALAYDJIAN Olivier APPERT IFP Patrick LE QUÉRÉ **CNRS** Jean-Michel DURAND SAFT Robert BOZZA Véolia

Jacques VARET	BRGM	Pierre-Étienne GAUTIER	SNCF
Patrick CANAL	Atee	Jacques RENVIER	Snecma
Nicolas de MENTHIÈRE	Cemagref	Xavier LECLERQ	STX France
Guillemette PICARD	Schlumberger	Olivier de GABRIELLI	Thésame
Bernard SCHERRER	EDF	Gérard-Marie MARTIN	Valéo
Françios FUENTES	Air Liquide	Jean-Pierre BUCHWADER	Véhicule du futur
Didier MARSACQ	CEA Liten	Patrick LEFEBVRE	Ville de Paris
Raffaele LIBERALI	Commission européenne		
Olivier DELMAS	Ineris	Bâtiment	
Romain VERNIER	BRGM	- Juliane	
Jean-Michel KEHR	MEDDTL	Didier ROUX	Saint Gobain
Caroline FEFFER	MEDDTL	Jacques ROSEMONT	Oséo
Émilie BABUT	MEDDTL	Paul ACKER	Lafarge
		Pierre ROSSI	Laboratoire central des ponts et chaussées
Transports		Christian COCHET	Institut Carnot CSTB
Transporto		Philippe GUESDON	ArcelorMittal
Agnès PAILLARD	Aerospace Valley	Arnaud MUSSAT	Bouygues
Alain JULLIEN	Alstom	Philippe MARÉCHAL	CEA Liten
Gérard LARUELLE	Astech	Nathalie SOCKEEL	Eco Logis Innovation
Simon COUTEL	Cofiroute	Jean-Luc DORMOY	EDF
Yannick ANNE	DGA	JP BARDY	MEDDTL
Emmanuel CLAUSE	DGCIS	Jacques ROSEMONT	Oséo
Victor DOLCEMASCOLO	Dirif	Claude LE PAPE	Schneider
Jamel CHERGUI	Eurocopter	Jean-Pierre HAMELIN	Solétanche-Bachy
Jean-Charles SARBACH	FIEV	Sven SAURA	Véolia Propreté
Corinne LIGNET	Gifas	Christophe GOBIN	Vinci
Xavier MONTAGNE	IFP	Michel COTE	Advancity
Jean DELSEY	Inrets		(pôle de compétitivité)
Yves RAVALARD	I-Trans	Pierre MIT	Untec
Pascal NIEF	LUTB	Dominique BARNICHON	Académie de Paris
Fabien PARIS	MEDDTL/DGITM	Georges-Henri FLORENTIN	FCBA
Marc CHARLET	Mov'éo	David POCIC	Fibres Grand'Est
Arnaud ACHER	NOV@LOG	Guillaume JOLLY	Industries
Benoît JEANVOINE	Oséo	Home CHARRIE	et Agro-Ressources
Olivier PAJOT	PSA	Hervé CHARRUE	Institut Carnot CSTB
André PÉNY	RATP	Jean-Michel GROSSELIN	MEDDTL
Jacques HÉBRARD	Renault	Philippe JORDAN	Pôle Alsace énergivie
Bernard FAVRE	Renault Trucks	Bogdan ROSINSKI	S2E2

Bernard FAVRE

Santé, agriculture et agro	alimentaire	Jean-Christophe OLIVO-MARIN	Institut Pasteur
		Catherine SAUVAGEOT	ProPackFood
Gilles BLOCH	CEA	Maurice BARBEZANT	Unceia
Jean-Paul PÉRON	DGCIS	Hedwige SCHAEPELYNCK	AtlanpoleBiotherapies
Marc RICO	DGCIS	David SOURDIVE	Medicen (pôle
Jean-Marc GROGNET	DGCIS		de compétitivité)
Marc ROHFRITSCH	DGCIS	Étienne VERVAECKE	Nutrition-Santé-
Jean-Yves BONNEFOY	Transgene		Longévité (pôle de compétitivité)
François BALLET	Sanofi-Aventis	Philippe TCHENG	Sanofi
Françoise DELABAERE	Qualitropic	David WARLIN	lpsen
Manuel TINLOT	Oséo	Jacquie BERTHE	Eurobiomed
Anthony PUGSLEY	Institut Pasteur	•	(pôle de compétitivité)
Patrick ÉTIÉVANT	Inra Dijon	Philippe CLEUZIAT	Lyon biopôle
Corinne ANTIGNAC	HôpitalNecker-Enfants		(pôle de compétitivité)
Malades		Michel PINEL	Valorial (pôle
Annette FREIDINGER	Ensaia		de compétitivité
Nicolas GAUSSERÈS	Danone Vitapole	A :	agroalimentaire)
Max REYNES	Cirad	Ariane VOYATZAKIS	Oséo
Mathias FINK	Supersonic Imagine	Virginie FONTAINE-LENOIR	Oséo
François KÉPÈS	Genopole	Christine MICHEL	Cepia Inra
André CHOULIKA	Cellectis	Daniel VASMANT	DGCIS
Gilles VERGNAUD	DGA	Thierry DAMERVAL	Inserm
Marie-Hélène CHASSAGNE	Fromageries BEL	Jacques GRASSI	Inserm
Pierre TAMBOURIN	Genopole	Isabelle DIAZ	LEEM
Isabelle VILLEY	Institut de la vision	Patrice ROBICHON	Pernod Ricard

Crédits photos :

Ademe, IFP, Thalès, Immersion, Airbus, Alstom, Fotolia, Messier Douty, Renault, CPMOH, Veolia, EDF, Lyon Urban Trucks, Snecma, Novartis.