
Development of innovative bio-based structural resins

General Context

- Bio-based Industry Objectives¹:
 - Develop innovative products & accelerate market introduction
 - Increase the overall percentage of biobased chemical production

¹Biobased for Growth – A Public-private partnership on biobased industries

General Context: Challenges

- Studies concerning the use of bio-based resins for structural applications are very limited
- Very little literature up to now regarding structural applications
- Example: No "green solution" found up to now to answer all aeronautical specifications (mainly in terms of tensile lap shear strength, hardness, glass transition temperature, conditions of processability, etc.)
- Epoxy resins are mostly used in structural applications due to their good mechanical and adhesion properties, durability, as well as thermal and chemical resistances

Our research : replacement of traditional mineral oil based epoxy resins with bio-based epoxy resin systems for structural applications

General Context : Main "green" requirements

- Resins should be produced from natural and renewable resources
- Biobased developed resins should reach at least the same level of quality as fossil based resins
- The production of "green epoxy resins" should be energy extensive and result in lower CO₂ emissions than those of comparable epoxy resins

R&D Methodology

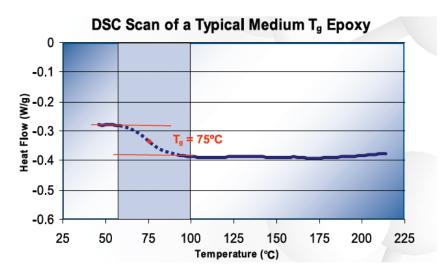
- Screening on **commercially available products** → to meet former requirements
- Implementation of bio-based resin/hardener formulations & characterization tests (lap shear, hardness, glass transition temperature, exothermic peak, rheological behavior...)
- Comparison with petrochemical epoxy resins "already used" as resins for structural applications
- **Optimization study** conducted, both on the curing process and on the composition of the matrix
 - Another path consisting in blending petrochemical epoxy resins with bio based epoxy resins is also being explored → to adjust final properties of resins

Characteristics of formulations

Biobased Hardener characteristics

- Based on monomer Cardanol, distilled from Cashew Nut Shell Liquid, CNSL
- CNSL is a natural, non-food chain, and annually renewable biomaterial
- Renewable content > 60%

- Biobased Epoxy resin ⁻ characteristics
- Liquid epoxy resin produced from epichlorhydrin based on glycerine
- Renewable content : 28%

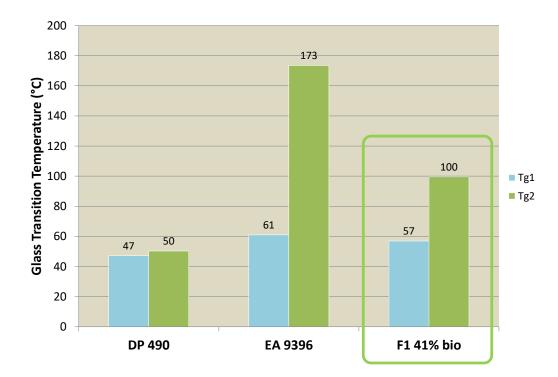

Technical Main Requirements

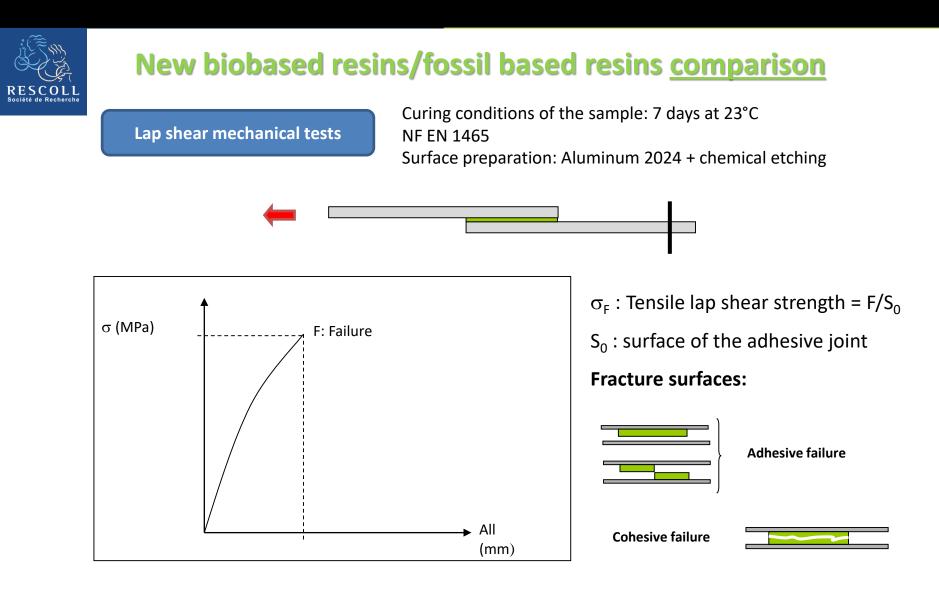
- The aim is to develop **new biobased resins** with levels of performance equal or superior to fossil based existing resins:
 - Thermomechanical properties
 - Mechanical properties
 - Reactivity
 - Bio renewable content
 - Bonding properties for adhesives uses

New biobased resin/fossil based resins comparison

Glass Transition Temperature

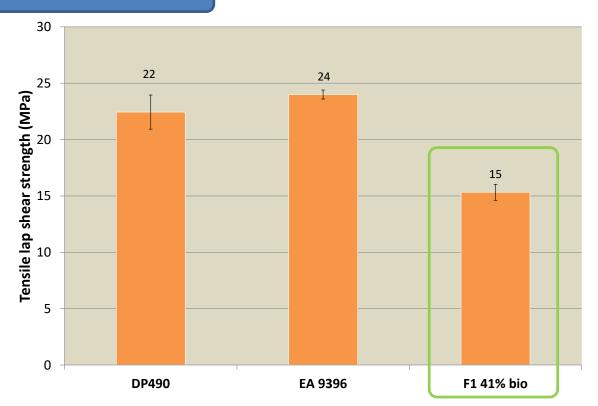
Epoxy technology


- Glass transition temperature Tg: temperature region where a thermosetting polymer changes from a hard, rigid or "glassy" state to a more pliable, compliant or "rubbery" state
- Tg is strongly dependent on the cure schedule
- Typically, resins with highest Tg have the best heat resistance
- The higher the Tg, the higher the cross-linked density and the higher the modulus

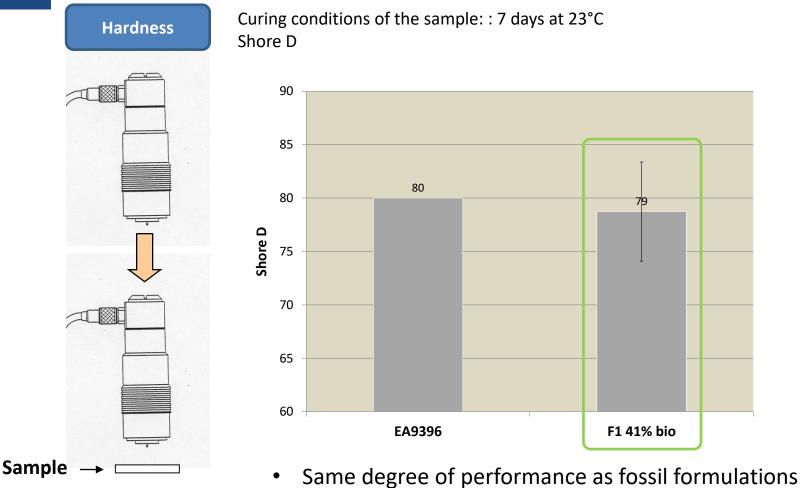

New biobased resins/fossil based resins comparison

Glass Transition Temperature

Curing conditions of the sample: 7 days at 23°C DSC – 2 thermal cycles \rightarrow Tg₁ & Tg₂

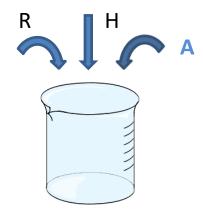

 Glass transition temperature value of bio based formulation is between that of commercial resins

New biobased resins/fossil based resins comparison


Lap shear mechanical tests

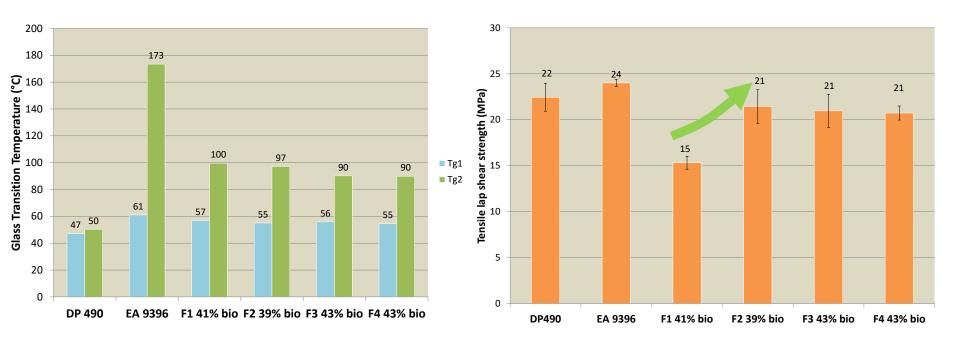
• Bonding properties of biobased formulation should be improved

New biobased resins/fossil based resins comparison


12

New biobased resin optimization

Biobased epoxy resin / biobased hardener


fossil toughener (0% bio) or biobased dilutant 1(86% bio) or biobased dilutant 2(86% bio)

Formulation	Α	Renewable content (%)
F1 (baseline)	- 41	
F2	Fossil toughener 39	
F3	Biobased dilutant 1 43	
F4	Biobased dilutant 2	43

New biobased resin optimization

New biobased resin optimization

Formulation	Renewable content (%)	ΔΤ _{g2} (%)	Δσ _F (%)
F1 (baseline)	41	-	-
F2	39	-3	40
F3	43	-10	40
F4	43	-10	40

- Whatever the compounds added to the formulation, the tensile strength increases by 40% for all three formulations.
- No obvious differences at the first Tg. The second Tg was reduced by 3% with fossil-based additives and by 10% with biobased dilutants.

Conclusions & Perspectives

- Cardanol based products seem worthy of interest for biobased structural resin applications
- ✓ Biobased epoxy resins just mimic the molecular structure of fossil based resins → use of less toxic biobased intermediates
- For aeronautic applications → Fire behavior, resistance to thermal cycling, ageing, aeronautic fluids
- Life cycle assessment (LCA) of innovative developed formulations → verification of environmental profile improvement

For more information :

Dr. Maxime OLIVE <u>maxime.olive@rescoll.fr</u>