

© 2018 RESCOLL CONFIDENTIAL

Electrically conductive coatings

An application example : Deicing in Windpower industry

An application example : Heating in building industry

Jeremy Di-Tomaso 14/09/2018 NOVAQ 2018

In cold climates, DEICING represents one of the greatest CHALLENGE IN WINDPOWER INDUSTRY

ICING EFFECT ON WIND TURBINE BLADES

- Loss of production
- Mechanical and aerodynamic performances reduced

RES

- Increased mechanical fatigue of blades
- Energy efficiency reduced
- Security problems: ice projection

Current solutions for deicing of wind turbine blades

Solution	Technology	Advantages	Drawbacks
Passive	Hydrophobic coating	Easy installation Retrofitting possible	Limited efficiency Degradation of hydrophobic properties over time
Active	Hot air blowing	Do not modify blades aerodynamic Deicing of the entire blade when stopped	Not suitable for retrofitting Not suitable for anti-icing Low speed heating High energy consumption
	Carbon fibbers embedded in the resin of the blade (Joule heating)	Efficient deicing Do not modify blades aerodynamic	Not suitable for retrofitting Hard to repair

ICE&WIND© project: deicing system for wind turbine blades

Engineering heating patches

Wind park operator

Installer Blades maintenance

RESCO

MAIN FEATURES

ICE DETECTION DEICING ANTIICING

TEMPERATURE REGULATION DEPENDING ON ICING CONDITION

RETROFITTING INSTALLATION

SYSTEM INDEPENDENT OF ANY TURBINE MODEL

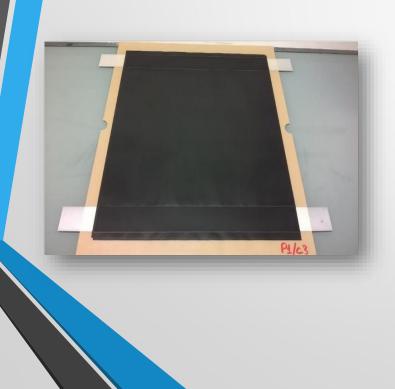
ENERGY CONSUMPTION REDUCED

EASY REPAIRS

ICE&WIND© project: deicing system for wind turbine blades

Specifications for the conductive paint

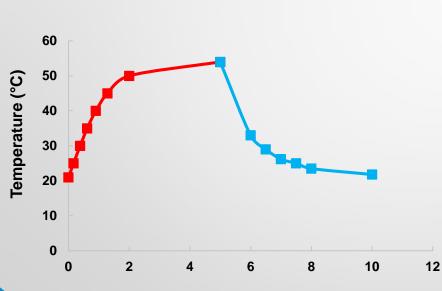
- Flexible (strong deformation of blades)
- Tunable and repeatable electrical conductivity
- Good adhesion to substrate
- Stable under ageing condition (UV; humidity, temperature variation)
- Water-based


Key parameters for the formulator

- Choice of conductive filler
- Dispersion of conductive filler in water
- Stability of the dispersion
- Compatibility between conductive filler and paint resin

ICE&WIND© project: deicing system for wind turbine blades

<u>Active solution</u> : Joule heating patches ready for bonding on the leading edges of wind turbine blades


RESCOLL heating patches contain water based electrically conductive paint

Electrically conductive paint under voltage => Joule heating

 $\mathsf{P} = \mathsf{U}^2 \, / \, \mathsf{R}$

- P: Heating power (Watt)
- U : electrical voltage (Volt)
- R : electrical resistance of the heating patch (Ohm)

KEY FEATURES OF OUR ELECTRICALLY CONDUCTIVE COATINGS

Thickness $\leq 0,15$ mm

Tunable conductivity / power

Flexible

Time (minutes)

Fast heating: 2 minutes

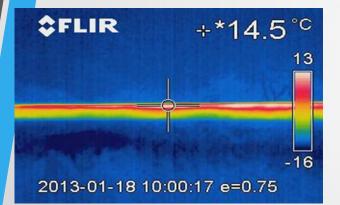
\$FLIR	+ 43.5 ^{°c}
	44
	• —
2014-09-19 13	21 0:59:25 e=0.95

RESC

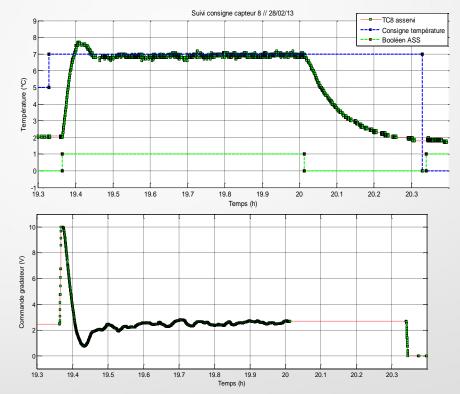
Infrared thermography of an heating element

Heating perfectly homogeneous

ICE&WIND© is a system specially developed for retrofitting wind turbines blades

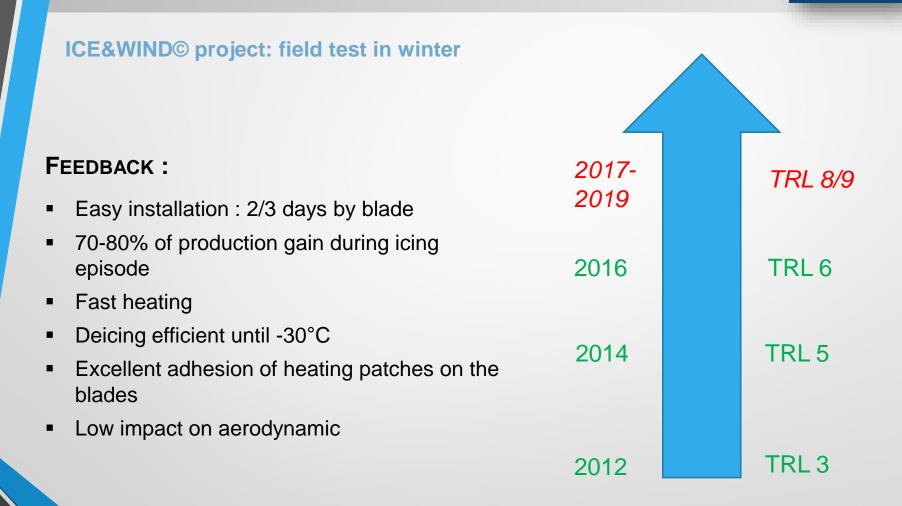

Installation of the system

- 1 Surface preparation
- 2 Bonding of heating patchs
- 3 Protection of heating patches with anti-erosion paint



Summer 2015 : equipment of a complete wind turbine

ICE&WIND© project: field test in winter


Infrared photography of a wind turbine blade during a deicing operation

RESC

Measurement of blade temperature during a deicing operation

Technological readiness level (TRL) scale of Ice&Wind technology

RESCOLL

JOULE HEATING: invisible radiant heating system for construction industry

JOULE HEATING: invisible radiant heating system for building industry

Advantages of our technology:

- Radiant heat: excellent thermal comfort
- Energy saving: up to 40% less energy than conventional radiator / convectors systems
- Invisible
- Low weight (< 150 g/m²) and very thin (< 0,15 mm)
- Safety: works at very low voltages : 24 or 48 Volts
- Easy installation
- Space saving
- Reduced pollution (dust and pollen circulation reduced)
- Specially suitable for buildings retrofitting: floor, plasterboard or celling

Conductive coatings for deicing

Available products

Product name	Binder	Application	Resistivity level
JHP ASRC 101	1K acrylic resin, water based	Joule heating Deicing	0,2 Ω.cm
JHP ASRC 210	2K polyurethane resin, water based	Joule heating, Deicing	0,2 Ω.cm

Applications overview

Heating : building industry, electrical vehicles, professional cooking equipment

Deicing : wind turbine blades, aircraft leading edge

Competitiveness through innovation

For further information:

RESCOLL

Research Company

Jeremy Di-Tomaso – Responsible R&D e-mail: Jeremy.ditomaso@rescoll.fr

www.rescoll.fr