# Laser

# NANO PATTERNS

FOR INDUSTRIAL APPLICATIONS

## AÍM⁄ÓF ĽASÉRÁSUŘF

This EU-funded H2020 project aims to bring LIPSS to mass production. This will be achieved by developing an easy to handle all in one machine that comprises a laser texturing device, an in-line monitoring system and simulation tools. Three use cases will demonstrate increased product performance:

#### 1) MEDICAL COMPONENTS

Antibacterial properties against mouth infections along with a surface enabling a good biological response by the surrounding tissues will deliver the new generation of dental implants.

### 2) ADVANCED BATTERIES

Enhanced adhesion and roughening of the current collector will allow controlled changes in the current collector surface in a very cost-effective and fast way (0.1 min/cm<sup>2</sup>). It will also improve the electrochemical properties of battery current collectors.

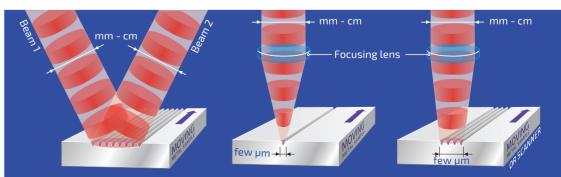
### 3) LINEAR ENCODERS

Tuning the reflection properties on the scale will make the encoder less prone to misalignments.

Applying a specific type of pattern or roughness onto the surface in order to change its properties using laser technology offers a significant commercial potential. This is because it allows improved product performance without altering the surface's chemical composition or adding any coatings. Femtosecond LIPSS will enable high resolution features (<1µm) in very precise locations with cost-effective process times.

#### WHAT ARE LIPSS?

Laser Induced Periodic Surface Structures (LIPSS) are naturally created by the interaction of ultrashort pulse laser beams with a surface. High resolution features (in the range of 100 nm - 1 µm) can be defined in precise locations of the component.


#### **DLIP** - Direct Laser Interference **DLA** - Direct Laser Ablation Patterning

#### Nano pattern possible

- Patterning on precise location possible
- Higher resolution Low processing
  - Much faster processing than DLA

LIPSS - Laser Induced Periodic

Surface Structures



## aser 4 surf

LASER FOR MASS PRODUCTION OF FUNCTIONALISED METALLIC SURFACES

www.laser4surf.eu



















This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 768636